分享到微信,
请点击右上角。
再选择[发送朋友]
或[分享到朋友圈]
2015-08-18 18:14
华夏收藏网讯 Google最近公布了一个奇葩的人工神经网络系统。为了让大家更好地理解这个系统,他们公布了一组奇葩图片——岂止是奇葩,简直渗人,密恐患者慎入!
接下来,我们将为大家展示世界名画是如何被这群人给玩坏的。请各位一定要戳开看大图!才能看出其中的奇妙的细节。
爱德华·蒙克的《呐喊》上,被植入了一只狗的头像(点开看右图)。
他们给这些图片起了个名字——Inceptionism。没错,就是《盗梦空间》的那个Inception。
这个神经网络的原理小编也是看得一知半解,不敢贸然翻译。大致意思就是,每一张图片都被放进一个“输入图层”,并与下一个图层相连,通过10-30层图层 的分析,最终“输出”一个新的图形。比如第一张图片是悬崖,到达下一个图层时,它可能被识别成了了一张类似一扇门或者一片树叶的图案。而最后一个图层会把 这些图形组合——这些神经元会将其组合成一个极其复杂的东西,比如一个完整的建筑或一颗树。
“近年来,人工神经网络在图片分类和语音识别的发展领域做出了引人瞩目的贡献。”来自GoogleAI团队的Alexander Mordvintsev说,“虽然它们建立在非常有名的算法上,并且已经成为我们所熟知的工具,但我们实际上对它们了解甚微。”
这很令人脑洞大开:有一张比较抽象的图片,如果它和某个东西有那么一丁点儿像,你就可以用这张图片生成那个东西。有多抽象呢?看看下面这个例子:一个满是噪点的图片居然也可以生成香蕉(虽然也不那么像啦)。
为什么说这个很重要呢?我们在训练(train)一个神经网络时,通常是简单地给它一些例子让它“学习”,希望它能很具象地“学到”这个例子的“精髓” (比如,一只叉子应该有一只柄和两到四个尖),同时忽略那些不太重要的东西(叉子的形状、大小和颜色)。但是,你要如何验证这个神经网络是否正确地“学 习”到了这些特点?
这些图片的例子就是告诉我们,可视化(visualization)的运用能帮助我们判断被测试的神经网络成功与否。如果这个神经网络最后确实呈现出了一只叉子,那就说明成功了。
来源:华夏收藏网-藏趣逸闻
分享到微信,
请点击右上角。
再选择[发送朋友]
或[分享到朋友圈]